
Journal of Global Optimization13: 75–93, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

75

A Constraint Satisfaction Approach to a Circuit
Design Problem

JEAN-FRANÇOIS PUGET1 and PASCAL VAN HENTENRYCK2

1Ilog SA, 9 rue de Verdun, F-94253 Gentilly, France; E-mail: puget@ilog.fr
2Brown University, Box 1910, Providence, RI 02912, USA; E-mail: pvh@cs.brown.edu

(Received 23 December 1996; accepted 28 December 1997)

Abstract. A classical circuit-design problem from Ebers and Moll (1954) features a system of nine
nonlinear equations in nine variables that is very challenging both for local and global methods.
This system was solved globally using an interval method by Ratschek and Rokne (1993) in the
box [0, 10]9. Their algorithm had enormous costs (i.e., over 14 months using a network of 30 Sun
Sparc-1 workstations) but they state that “at this time, we know no other method which has been
applied to this circuit design problem and which has led to the same guaranteed result of locating
exactly one solution in this huge domain, completed with a reliable error estimate”. The present
paper gives a novel branch-and-prune algorithm that obtains a unique safe box for the above system
within reasonable computation times. The algorithm combines traditional interval techniques with
an adaptation of discrete constraint-satisfaction techniques to continuous problems. Of particular
interest is the simplicity of the approach.

Key words: Global zero search, Electrical circuit, Transistor modelling, Interval methods, Branch
and prune, Constraint satisfaction

1. Introduction

The transistor modelling problem of Ebers and Moll [6] is the system of nonlinear
equations

(1− x1x2)x3[exp(x5(g1k − g3kx710−3 − g5kx810−3))− 1]
−g5k + g4kx2 = 0 (16 k 6 4)

(1− x1x2)x3[exp(x6(g1k − g2k − g3kx710−3 + g4kx910−3))− 1]
−g5kx1 + g4k = 0 (16 k 6 4)

x1− x3− x2x4 = 0;
where the constantsgik are given by

0.485 0.752 0.869 0.982

0.369 1.254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823

jogo436.tex; 30/06/1998; 12:38; p.1
ICPC LATEX2E FIRSTPROOF: PIPS No.: 160329 (jogokap:mathfam) v.1.15

76 J.-F. PUGET AND P. VAN HENTENRYCK

The problem is very challenging both for local and global methods because small
variations in the inputs produce large differences in the functions. Ratschek and
Rokne [23] summarize various attempts to find a solution to this problem using
local methods; these descriptions are not repeated here. It suffices to say that suc-
cessful attempts require very elaborate procedures, sometimes combining several
globally convergent algorithms.

In the same paper [23], Ratschek and Rokne propose an interval method which
solves the problem globally in the box [0, 10]9. In particular, they show that there
exists a unique solution in this box and they provide a guaranteed error estimate
by enclosing the solution in a box whose intervals are of width smaller than 3.2×
10−4. The computation times to obtain this result are, however, extremely large.
No computation times were given in [23], since this was not the primary aim of
the paper. However, a preliminary draft of the paper indicated that the total process
took over 14 months using a network of 30 Sun Sparc-1 workstations. Ratschek and
Rokne also recommended that such methods for solving unstable systems should
be further investigated in order to reduce the computations.

Here we present a novel interval algorithm that isolates all safe boxes (i.e., all
boxes which contain at least one solution) to nonlinear equation systems and show
that the algorithm isolates a single safe box for the circuit-design problem within
reasonable computation times.? The main novelty of the procedure is in the way
in which constraints are used to prune the search space. The pruning techniques,
some of which were presented in [24] and some of which are novel, are based on
constraint- satisfaction techniques from artificial intelligence and are particularly
effective when far from a solution. These techniques are thus orthogonal to tradi-
tional interval techniques, which are most effective close to a solution (when the
boxes are small).

The paper is organized as follows. Section 2 gives the necessary background in
interval analysis. Section 3 discusses the problem description and the simplyfying
assumptions. Section 4 presents a generic branch-and-prune algorithm for isolating
all solutions to a nonlinear system of equations, Section 5 presents the various
pruning techniques, and Section 6 reconsiders the simplifying assumptions. Section
7 reports the experimental results and Section 8 concludes the paper.

2. Preliminaries

Here we review some basic concepts of interval analysis to needed for this paper.
More information on interval arithmetic can be found in many places [e.g., 1, 7, 8,
17, 18, 20, 22]. Our definitions are slightly non-standard.

? Proving that the safe box contains a unique solution requires some experimental trial-and-error
work; see Section 6 of Ratschek and Rokne [23] for a discussion of this issue.

jogo436.tex; 30/06/1998; 12:38; p.2

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 77

2.1. INTERVAL ARITHMETIC

We consider<∞ = < ∪ {−∞,∞}, the set of real numbers extended with the two
infinity symbols, and the extension of the relation< to this set. We also consider
a finite subsetF of <∞ containing−∞,∞, 0. In practice,F corresponds to the
floating-point numbers used in the implementation.

DEFINITION 1 (Interval). An interval[l, u] with l, u ∈ F is the set of real num-
bers

{r ∈ <|l 6 r 6 u}.
The set of intervals is denoted byI and is ordered by set inclusion.?

DEFINITION 2 (Enclosure).Let S be a subset of<. The enclosure ofS, denoted
byS, or�S, is the smallest intervalI such thatS ⊆ I . We often writer instead of
{r} for r ∈ <.

We denote real numbers by the lettersr, v, a, b, c, d, F -numbers by the letters
l,m, u, intervals by the letterI , real functions by the lettersf , g and interval
functions (e.g., functions of signatureI → I) by the lettersF , G, all possibly
subscripted. We usel+ (resp.l−) to denote the smallest (rep. largest)F - number
strictly greater (resp. smaller) than theF -numberl. To capture outward rounding,
we usedre (resp.brc) to return the smallest (resp. largest)F -number greater (resp.
smaller) or equal to the real numberr. We also useEI to denote a box〈I1, . . . , In〉
andEr to denote a tuple〈r1, . . . , rn〉. Q is the set of rational numbers andN is the
set of natural numbers. We also use the following notations:

left([l, u]) = l

right([l, u]) = u

center([a, b]) = b(a + b)/2c
DEFINITION 3 (Canonical interval).A canonical interval is an interval of the
form [l, l] or [l, l+], wherel is a floating-point number.

The fundamental concept of interval arithmetic is the notion of interval extension.

DEFINITION 4 (Set extensions).Consider a setS ⊆ <n and a functionf : <n→
<. The set extension off is defined as

f (S) = {f (Er)|Er ∈ S}.
DEFINITION 5 (Interval extensions).An interval functionF : In → I is an
interval extension off : <n→< in EI0 if

∀ EI ⊆ EI0 : f (EI) ⊆ F(EI).

? These intervals are usually called floating-point intervals in the literature.

jogo436.tex; 30/06/1998; 12:38; p.3

78 J.-F. PUGET AND P. VAN HENTENRYCK

EXAMPLE 1 The interval function⊕ defined as

[a1, b1] ⊕ [a2, b2] = [ba1 + a2c, db1 + b2d]
is an interval extension of addition of real numbers.

In this paper, we restrict attention to monotonic interval extensions because of their
fundamental properties and because traditional interval extensions of primitive
operations satisfy these requirements naturally.

DEFINITION 6 (Monotonic interval extensions).An interval functionF : In →
I is monotonic inEI0 if

∀ EI1, EI2 ⊆ EI0 : EI1 ⊆ EI2⇒ F(EI1) ⊆ F(EI2).

It is important to stress that a real function can be extended in many ways. For
instance, the interval function⊕ is the most precise interval extension of addition
(i.e., it returns the smallest possible interval containing all real results), while a
function always returning[−∞,∞] would be the least accurate. In the following,
we assume fixed monotonic interval extensions for the primitive operators (for
instance, the interval extension of+ is defined by⊕). In addition, we overload
the real symbols and use them for their interval extensions.

2.2. CONSTRAINT REPRESENTATIONS

It is well known that different computer representations of a real function produce
different results when evaluated with floating-point numbers on a computer. As
a consequence, the way in which constraints are written may have an impact on
the behavior on the algorithm. For this reason, a constraint or a function in this
paper is considered to be an expression written in some language. In addition, we
abuse notation by denoting functions (resp. constraints) and their representations
by the same symbol. In the remaining sections, we assume that real variables in
constraints are taken from a finite (but arbitrarily large) set{x1, . . . , xn}. Similar
conventions apply to interval functions and constraints. Interval variables are taken
from a finite (but arbitrarily large) set{X1, . . . , Xn}.

3. Problem description

The problem considered in this paper is finding all solutions to a system of equa-
tions

S =


0= f1(x1, . . . , xn)

. . .

0= fn(x1, . . . , xn)

jogo436.tex; 30/06/1998; 12:38; p.4

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 79

in a box EI 0 = 〈I 0
1 , . . . , I 0

n 〉. Of course, on a computer, it is generally impossible
to find these solutions exactly and interval methods aim at returning small boxes
containing all solutions. Preferably, each such box issafe, meaning that it contains
a solution. For the purposes of this paper, interval methods can thus be viewed as
solving the following problem: assuming thatFi is a monotonic interval extension
of fi(16 i 6 n), find all canonical? boxes〈I1, . . . , In〉 in EI 0 satisfying

S =


0 ∈ F1(I1, . . . , In)

. . .

0 ∈ Fn(I1, . . . , In)

This is of course a simplification, since interval methods generally use various
interval extensions. However, restricting attention to this problem has the bene-
fits of crystallizing the intuition underlying our novel pruning methods. Section 6
reconsiders this simplification.

NOTATION: Let S be a system of constraints of the form

S =


0 ∈ F1(X1, . . . , Xn)

. . .

0 ∈ Fn(X1, . . . , Xn)

and letEI be a box〈I1, . . . , In〉. We denote byS(EI) andS(I1, . . . , In) the fact that
EI satisfies the system of interval constraintsS or, in symbols,

0 ∈ F1(I1, . . . , In) ∧ · · · ∧ 0 ∈ Fn(In, . . . , In).

Note also that we useS to denote systems of constraints andS to denote systems
of interval constraints.

4. The generic branch-and-prune algorithm

The above problem description highlights the finite nature of the problem, since
there are only finitely many floating-point intervals. Most interval methods are
thus best viewed as global search algorithms iterating two main steps: pruning and
branching. The basis schema underlying these algorithms, the branch-and-prune
schema, is depicted in Figure 1. The functionSearch receives a system of interval
constraintsS and an initial boxEI 0: it returns the set of canonical boxesEI in EI 0

satisfyingS(EI). The functionSearch first applies a pruning step that reduces the
initial box. This pruning step is the main topic of this paper. If the resulting boxEI
is empty, there is no solution to the problem. If the boxEI is canonical, it is returned

? In practice, one may be interested in boxes of a certain width or one may want to stop as soon
as a safe box is obtained. It is easy to generalize our results to these requirements.

jogo436.tex; 30/06/1998; 12:38; p.5

80 J.-F. PUGET AND P. VAN HENTENRYCK

function Search(S, EI0)

begin
EI := Prune(S, EI0) :
if Empty(EI) then
return ∅

else ifCanonical(EI) then
return { EI}

else
〈 EI1, EI2〉 := Split(EI);
return Search(S, EI1) ∪ Search(S, EI2);

end

Figure 1. The branch-and-prune algorithm.

as a result. Otherwise, the box is split along one dimension into two subboxes,EI1

and EI2, which are then explored recursively using the same algorithm.
A specific interval algorithm can be obtained by specifying the splitting strategy

and pruning techniques. Our algorithms use a splitting strategy that consists of
splitting the largest interval in two parts. The main novelty of our algorithms lies in
the pruning techniques and we will define three pruning operators,Prune0, Prune1,
Prune2, that produce three distinct algorithms.

5. The pruning techniques

The two pruning techniques used in our algorithm are box(1)- and box(2)-consis-
tency. To ease understanding, these techniques are contrasted with a traditional
interval technique, which we call box(0)-consistency for reasons that will become
clear below.

5.1. BOX(0)-CONSISTENCY

It is traditional in branch-and-prune algorithms to use a relaxation of the problem
at hand. If there is no solution to the easier problem, it follows that there are no
solutions to the original problem. Box(0)-consistency is a weak, but very simple,
relaxation used in most interval systems. Given the problem of finding canonical
boxes in a boxEI satisfying a system of interval constraintsS, box(0)-consistency
consists of testingS(EI). If S(EI) does not hold, there are obviously no solutions to
the original problem, because of the definition of interval extensions. The pruning

jogo436.tex; 30/06/1998; 12:38; p.6

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 81

operator associated with box(0)-consistency can thus be defined as follows:

Prune0(S, EI) =
{
∅ if ¬S(EI)

EI otherwise.

Box(0)-consistency can in fact be viewed as a form of projection. The original
problem could be stated as an existence question

∃X1 ⊆ I1, . . . , ∃Xn ⊆ In : S(X1, . . . , Xn)

and box(0)-consistency approximates it by replacing each interval variable by its
interval to obtain the test

S(I1, . . . , In)

which reduces to testing each constraint inS independently.

5.2. BOX(1)-CONSISTENCY

This section presents the first pruning operator used in our algorithm. It starts with
an informal discussion, then specifies the pruning operator, and presents a simple
implementation.?

5.2.1. Informal presentation

The first fundamental idea underlying box(1)-consistency [2] is to project all vari-
ables but one or, more precisely, to replace all variables but one by their intervals.
This produces a stronger pruning than box(0)-consistency but, of course, at a higher
cost. The original existence problem

∃X1 ⊆ I1, . . . , ∃Xn ⊆ In : S(X1, . . . , Xn)

is thus approximated by

∃X1 ⊆ I1 : S(X1, I2, . . . , In) ∧
∃X2 ⊆ I2 : S(I1,X2, . . . , In) ∧
. . .

∃Xn ⊆ In : S(I1, . . . , In−1,Xn)

This relaxation can be tested relatively easily. Notice first that the conditions are
independent. In addition, a condition of the form

∃X1 ⊆ I1 : S(X1, I2, . . . , In)

? Separating the specification from the implementation has the advantage of distinguishing what
is being computed from how to compute it. There are many ways to implement the concepts described
in this section, and our goal here is to focus on the concepts, not on the technical details (which can
be found in Van Hentenryck et al. [24]).

jogo436.tex; 30/06/1998; 12:38; p.7

82 J.-F. PUGET AND P. VAN HENTENRYCK

can be tested by considering all the canonical intervalsI in I1 and testing

S(I, I2, . . . , In)

Our implementation tries to be more effective by using adaptations of the interval
Newton method.

The second fundamental idea underlying box(1)-consistency is to reduce the
intervals associated with the variables. Consider the relaxation

∃X1 ⊆ I1 : S(X1, I2, . . . , In)

and letIl be the leftmost interval inI1 satisfying

S(Il, I2, . . . , In)

andIr the rightmost interval inI1 satisfying

S(Ir, I2, . . . , In).

It should be clear thatX1 must range in the intervalI ′

I ′ = [left(Il), right(Ir)]
since any interval on the left or on the right ofI ′ violates one of the conditions of
the relaxation. The interval associated withX1 can thus be reduced toI ′.

This reduction is applied for each of the variables until no more reduction
takes place. The resulting box is said to bebox(1)-consistent. In the course of this
process, it is possible to detect that no solution to the original problem exists, since
the intervals associated with the variables become smaller. Note also that a variable
can be considered several times in this reduction process.

5.2.2. The pruning operator

We now formalize the informal discussion above and present the pruning operator
associated with box(1)-consistency. Recall that all definitions assume thatS is de-
fined over the set of variablesX1, . . . , Xn. The main concept is box(1)-consistency,
which expresses that a system cannot be narrowed further by the reduction process
described informally in the previous subsection.

DEFINITION 7 (Box(1)-consistency).Let S be a system of interval constraints,
let EI be a box〈I1, . . . , In〉, and letli = left(Ii) andui = right(II) (1 6 i 6 n). S
is box(1)-consistent inEI wrt i if

S(I1, . . . , Ii−1, [li , l+i], Ii+1, , . . . , In)

∧ S(I1, . . . , Ii−1, [u−i , ui], Ii+1, . . . , In) whenli 6= ui

and

S(I1, . . . , Ii−1, [li , li], Ii+1, . . . , In) whenli = ui.

S is box-consistent inEI if it is box(1)-consistent inEI wrt all i in 1 . . . n.

jogo436.tex; 30/06/1998; 12:38; p.8

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 83

function Prune1(S, EI)

begin
repeat
EIp := EI ;EI = ∩{Narrow1(S, EI , i)|16 i 6 n};

until EI = EIp;
return EI ;

end

function Narrow1(S, 〈I1, . . . , In〉, i)
begin

C := {Ic ⊆ I1|Ic is canonical andS(I1, . . . , Ii−1, Ic, Ii+1, . . . , In)};
if C = ∅ then

return ∅;
else

return [mini∈C left(I), maxI∈C right(I)];
end

Figure 2. Implementing box(1)-consistency.

The pruning operator associated with box(1)-consistency simply returns the
largest box in the initial interval that is box(1)-consistent (or, more informally, the
largest box in the initial interval that cannot be narrowed further). This box always
exists because of the monotonicity of interval extensions and is unique. Of course,
it can be empty.

DEFINITION 8 (Box(1)-consistency pruning).Let S be a system of interval con-
straints and letEI be a box. The pruning operator associated with box(1)-consistency
can be defined as

Prune1(S, EI) = EI ′
whereEI ′ is the largest box inEI such thatS is box(1)- consistent inEI ′.

5.2.3. A simple implementation

The pruning operator can be computed in many ways. Figure 2 presents a simple
iterative algorithm for this purpose; see Van Hentenryck [24] for a more efficient
implementation. The algorithm is a simple fixpoint algorithm that terminates when
no further pruning can be obtained (i.e.,EI = EIp). The body of the loop applies
a narrowing operation on each of the variables and produces a new box that is
the intersection of all these narrowings. The narrowing functionNarrow1(S, EI , i)

returns the largest boxEI ′ in EI such thatS is box(1)-consistent inEI ′ wrt i.

jogo436.tex; 30/06/1998; 12:38; p.9

84 J.-F. PUGET AND P. VAN HENTENRYCK

5.3. BOX(2)-CONSISTENCY

Box consistency has been shown to be effective for solving a variety of nonlinear
applications [24]. For some applications, however, and for the transistor modelling
problem in particular, better performance can be obtained by using a stronger local
consistency condition that we callbox(2)-consistency. Box(2)-consistency is in
fact an approximation of path consistency [16] and is related to some consistency
notions presented in L’Homme [14].

5.3.1. Informal presentation

Box(2)-consistency generalizes box(1)-consistency by projecting all but two vari-
ables. The original existence problem

∃X1 ⊆ I1, . . . , ∃Xn ⊆ In : S(X1, . . . , Xn)

is thus approximated by

∃X1 ⊆ I1,X2 ⊆ I2 : S(X1,X2, I3, . . . , In) ∧
∃X1 ⊆ I1,X3 ⊆ I3 : S(X1, I2,X3, I4, . . . , In) ∧
. . .

∃X2 ⊆ I2,X3 ⊆ I3 : S(I1,X2,X3, I4, . . . , In) ∧
. . .

∃Xn−1 ⊆ In−1,Xn ⊆ In : S(I1, . . . , In−2,Xn−1,Xn)

Once again, it is possible to test this relaxation easily, at least from a conceptual
standpoint. The conditions are independent and a condition of the form

∃X1 ⊆ I1,X2 ⊆ I2 : S(X1,X2, I3, . . . , In)

can be tested by considering all pairs of canonical intervals inIi andI2 for X1 and
X2.

As was the case for box(1)-consistency, box(2)-consistency makes use of this
relaxation to prune the intervals associated with each variable. Consider a condition

∃X1 ⊆ I1,X2 ⊆ I2 : S(X1,X2, I3, . . . , In)

and a canonical intervalI ′1 ⊆ I1. If there is no boxEI ′ ⊆ 〈I ′1, I2, . . . , In〉 such that
S is box(1)-consistent inEI ′, then obviouslyx 6∈ I ′1. It is thus possible to narrow
the bounds ofI1 by using this pruning rule, and this process can be iterated for all
variables until no further pruning is available.

5.3.2. The pruning operator

The notion of box(2)-consistency is defined in terms of box(1)-consistency or, more
precisely, in terms of whether a system of interval constraints can be made box(1)-
consistent in a box.

jogo436.tex; 30/06/1998; 12:38; p.10

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 85

DEFINITION 9 (Box(1)-satisfiability).A system of interval constraintsS is box(1)-
satisfiable inEI0, denoted by BoxSat1(S, EI0), if there exists a boxEI ⊆ EI0 such thatS
is box(1)-consistent inEI .

Informally speaking, box(2)-consistency says that the bounds of each variable are
box-satisfiable, implying that they cannot be reduced further using the pruning rule
described above.

DEFINITION 10 (Box(2)-consistency).Let S be a system of interval constraints
and EI be a box〈I1, . . . , In〉 with Ij = [lj , uj]. S is box(2)-consistent inEI wrt i if

BoxSat1(S, 〈I1, . . . , Ii−1, [li , l+i], Ii+1, . . . , In〉) ∧
BoxSat1(S, 〈I1, . . . , Ii−1, [u−i , ui], Ii+1, . . . , In〉)

whenli 6= ui and if

BoxSat1(S, EI) otherwise.

The systemS is box(2)-consistent inEI if it is box(2)-consistent inEI wrt all i(1 6
i 6 n).

It can be shown that box(2)-consistency implies box(1)-consistency.

PROPOSITION 1. Let S be a system of monotonic interval constraints. IfS is
box(2)-consistent inEI , thenS is box(1)-consistent inEI .

Proof. Assume for simplicity thatEI = 〈I1, . . . , In〉 with li 6= ui . The proof is
similar otherwise. SinceS is box(2)-consistent inEI , S is box(2)-consistent inEI wrt
all i(16 i 6 n). Thus,

BoxSat1(S, 〈I1, . . . , Ii−1, [li , l+i], Ii+1, . . . , In〉)
or, more explicitly,

∃ EI ′ ⊆ 〈I1, . . . , Ii−1, [li , l+i], Ii+1, . . . , In〉 : S is box(1)-consistent inEI ′.
It follows that

0 ∈ Fi(EI ′) (16 i 6 n)

and, by monotonicity ofFi , that

0 ∈ Fi(I1, . . . , Ii−1, [li , l+i], Ii+1, . . . , In).

The proof that

0 ∈ Fi(I1, . . . , Ii−1, [u−i , ui], Ii+1, . . . , In)

is similar. The result follows from the definition of box(1)-consistency. 2

The pruning operator associated with box(2)-consistency simply returns the
largest box in the initial interval which is box(2)-consistent.

jogo436.tex; 30/06/1998; 12:38; p.11

86 J.-F. PUGET AND P. VAN HENTENRYCK

function Prune2(S, EI)

begin
repeat
EIp := EI ;
EI = ∩{Narrow2(S, EI, i)|16 i 6 n};

until EI = EIp;
return EI ;

end

function Narrow2(S, 〈I1, . . . , In〉, i)
begin

C := {Ic ⊆ Ii |Ic is canonical and¬Empty(Prune1(S, 〈I1, . . . , Ii−1, Ic, Ii+1, . . . , In〉))};
if C = ∅ then

return ∅;
else

return [mini∈C left(I), maxI∈C right(I)];
end

Figure 3. Implementing box(2)-consistency.

DEFINITION 11 (Box(2)-consistency pruning).LetS be a system of interval con-
straints and letEI be a box. The pruning operator associated with box(2)-consistency
can be defined as

Prune2(S, EI) = EI ′

whereEI ′ is the largest box inEI such thatS is box(2)- consistent inEI ’.

5.3.3. A simple implementation

Once again, the pruning operator can be computed in many ways. Figure 3 presents
a simple iterative algorithm close to our actual implementation. The algorithm is
again a simple fixpoint algorithm that terminates when no further pruning can
be obtained. The body of the loop applies a narrowing operation on each of the
variables and produces a new box that is the intersection of all these narrowings.
The narrowing functionNarrow2(S, EI , i) returns the largest boxEI ′ in EI such thatS
is box(2)-consistent inEI ′ wrt i. The pruning operator of box(1)-consistency is used
to compute this narrowing operator. Note that it would be easy to define any level
of box-consistency at this point, since box(k−1)-consistency can be used to define
box(k)-consistency in a generic way.

5.4. RELATED WORK

It is useful to relate these pruning operators to earlier work in constraint satisfac-
tion. Projections, and approximations of projections, have been used extensively
in the artificial intelligence community (under the nameconsistency techniques)

jogo436.tex; 30/06/1998; 12:38; p.12

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 87

to solve discrete combinatorial problems [e.g., 16, 15]. They have been adapted
to continuous problems [e.g., 5, 14] and used inside systems such as BNR- Pro-
log and CLP(BNR) [3, 21] and many systems since then. The techniques used
in systems like BNR-Prolog and CLP(BNR) are weaker than box(1)-consistency,
since they decompose all constraints into ternary constraints on distinct variables
before applying a form of box(1)-consistency. They do not scale well on difficult
problems. Box(1)-consistency was introduced in Benhamou [2]. It is related to
the techniques presented in Hong and Stahl [10], which uses a similar idea for
the splitting process. The consistency notions of L’Homme [14] are a weaker,
and less effective, form of box(k)-consistency: it is obtained by decomposing all
constraints into ternary constraints over distinct variables and by applying a form
of box(k)-consistency on the resulting constraints.

6. The branch and prune algorithm revisited

We now reconsider the assumptions of Section 3. As mentioned in that section, our
algorithm uses two interval extensions, the natural interval extension and the mean
value interval extension, since distinct interval extensions may produce different
prunings. In particular, the natural interval extension is generally better when far
from a solution, while the mean value interval extension is more precise when
close to a solution. This section reviews both extensions and reconsiders the overall
branch-and-prune algorithm.

6.1. THE NATURAL INTERVAL EXTENSION

The simplest interval extension of a function is its natural interval extension. In-
formally speaking, it consists in replacing each number by the smallest interval
enclosing it, each real variable by an interval variable and each real operation by
its fixed interval extension. In the following, iff is a real function,f̂ is its natural
extension.

EXAMPLE 2 (Natural interval extension).The natural interval extension of the
functionx1(x2+ x3) is the interval functionX1(X2+ x3).

The advantage of this extension is that it preserves how constraints are written
and hence users of the system can choose constraint representations particularly
appropriate for the problem at hand. It is useful to generalize the natural interval
extension to a system of constraints.

DEFINITION 12 (Natural interval extension of a system).Let S be a system of
constraints

S =


0= f1(x1, . . . , xn)

. . .

0= fn(x1, . . . , xn)

jogo436.tex; 30/06/1998; 12:38; p.13

88 J.-F. PUGET AND P. VAN HENTENRYCK

The natural extension ofS, denoted bŷS, is the set of the interval constraints

S =


0= f̂1(X1, . . . , Xn)

. . .

0= f̂n(X1, . . . , Xn)

The following result is easy to prove by induction.

PROPOSITION 2.The natural interval extension of a function, a constraint, or a
system of constraints is monotonic.

6.2. THE MEAN VALUE INTERVAL EXTENSION

The second interval extension is based on the Taylor expansion around a point. This
extension is an example of centered forms that are interval extensions introduced
by Moore [17] and have been studied by many authors, since they have important
properties. The mean value interval extension of a function is parametrized by the
intervals for the variables in the function. It also assumes that the function has
continuous partial derivatives. Given these assumptions, they key idea behind the
extension is to apply a Taylor expansion of the function around the center of the
box and to bound the rest of the series using the box.

DEFINITION 13 (Mean value interval extension).Let EI be a box〈I1, . . . , In〉 and
mi be the center ofIi. The mean value interval extension of a functionf in EI ,
denoted byτ(f, EI), is the interval function

f̂ (m1, . . . ,mn)⊕
n∑

i=1

∂̂f

∂xi

(EI)(Xi 	mi).

Let S be a system of constraints

S =


0= f1(x1, . . . , xn)

. . .

0= fn(x1, . . . , Xn)

The mean value interval extension ofS in EI , denoted byτ(S, EI), is the system of
interval constraints

τ(S, EI) =


0= τ(f1, EI)(X1, . . . , Xn)

. . .

0= τ(fn, EI)(X1, . . . , Xn)

Note that the mean value interval extensions is defined in terms of natural exten-
sions. The proof of the following proposition can be found in Caprani and Madsen
[4].

jogo436.tex; 30/06/1998; 12:38; p.14

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 89

function Search(S, EI0)

begin
EI := Prune(Ŝ ∪ τc(S, EI0), EI0);
if Empty(EI) then
return ∅

else ifCanonical(EI) then
return { EI}

else
〈 EI1, EI2〉 := Split(EI);
return Search(S, EI1) ∪ Search(S, EI2);

end

Figure 4. The branch-and-prune algorithm revisited.

PROPOSITION 3.The mean value interval extension of a function is a monotonic
interval extension.

It is interesting to note that box consistency on the mean value interval extension
of a system of constraints is closely related to the Hansen-Sengupta operator [8],
which is an improvement over Krawczyk’s operator [13]. Hansen and Smith [9]
also argue that these operators are more effective when the interval Jacobian of
the system is diagonally dominant and they suggest conditioning the systemS. For
the purpose of this paper, we simply assume that we have a conditioning operator
cond(S, EI) and use the notationτc(S, EI) to denoteτ(cond(S, EI), EI). See Kearfott
[11, 12] for extensive coverage of conditioners.

6.3. THE BRANCH-AND-PRUNE ALGORITHM

We are now in position to reconsider our branch-and-prune algorithm. The new
version, given in Figure 4, differs in two ways from the algorithm presented in
Section 4. On the one hand, the algorithm receives as input a system of constraints
(instead of a system of interval constraints). On the other hand, the operationPrune
receives a system of interval constraints consisting of the natural interval extension
and the conditioned mean value interval extensions of the original system.

6.4. EXISTENCE PROOF

We now describe how the algorithm proves the existence of a solution in a box.
Let {f1 = 0, . . . , fn = 0} be a system of equations over variables{x1, . . . , xn}, let

jogo436.tex; 30/06/1998; 12:38; p.15

90 J.-F. PUGET AND P. VAN HENTENRYCK

EI = 〈I1, . . . , In〉 be a box and define the intervalsI ′i (16 i 6 n) as follows

I ′i =
mi 	 1

∂̂fi

∂xi
(EI)

 n∑
j=1,j 6=1

∂̂fi

∂xj

(EI)(Ij 	mj)⊕ f̂i(m1, . . . ,mn)


wheremi = center(Ii). If

I ′i ⊆ Ii (16 i 6 n)

then there exists a zero in〈I ′i , . . . , I ′n〉. A proof of this result can be found in Moore
and Jones [19].

7. Experimental results

This section reports experimental results of the branch-and-prune algorithms. We
compare the branch-and-prune algorithm with two instantiations of the pruning
operator:Prune1 to obtain the algorithm presented in Van Hentenryck et al. and
Prune2 to obtain a novel algorithm more effective for the transistor modelling
problem.

The transistor modelling problem. The box(2)-consistency algorithm was applied
to find all solutions of the transistor modelling problem. Branching was applied
until a safe box or a box of width smaller than 10−8 was obtained. The algorithm
returned a unique box

x[1] = 0.8999999 + [0.48517e−7, 0.566954e−7]
x[2] = 0.4499874 + [0.6902216e−7, 0.7493801e−7]
x[3] = 1.00000648+ [0.60195e−9, 0.43303e−8]
x[4] = 2.00006854+ [0.5787e−10, 0.319179e−8]
x[5] = 7.9999714 + [0.3767867e−7, 0.4259589e−7]
x[6] = 7.99969268+ [0.14994e−8, 0.692803e−8]
x[7] = 5.00003127+ [0.338646e−8, 0.848255e−8]
x[8] = 0.99998772+ [0.69887e−9, 0.621097e−8]
x[9] = 2.00005248+ [0.47411e−9, 0.649037e−8]

in the original range[0, 10]9, together with a proof that the box contains a so-
lution. The algorithm performs only 118 branchings and takes 2359.80 seconds
(roughly 40 minutes) on a Sun Ultra-2 running Solaris. This is of course a con-
siderable improvement over the results of Ratschek and Rokne [23]. Interestingly,
the box(1)-consistency algorithm performs 135099 branchings and takes 11841
seconds (roughly 3 hours and 20 minutes) on the same machine, still a considerable
improvement over [23].

jogo436.tex; 30/06/1998; 12:38; p.16

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 91

Table 1. Box(1)- versus box(2)-consistency on some benchmarks from continuation methods

Benchmarksv d range Box(1)-time Box(1)-branch Box(2)-time Box(2)-branch

kin1 12 4608 [−108, 108] 15.1 307 46.20 15

kin2 8 256 [−108, 108] 186.1 3505 747.90 194

combustion 10 96[−108, 108] 0.0 1 0.5 0

chemistry 5 108 [0, 108] 1.1 57 2.2 1

Benchmarks from continuation methods. It is worth comparing the box(1)- and
box(2)-consistency algorithms on some standard benchmarks from continuation
methods [25]. The box(1)-consistency algorithm compares well with continuation
methods on these benchmarks [24]. Table 1 reports the results and gives, for each
benchmark, the number of variables, the degree of the polynomial system, the
initial range of the variables, and the CPU time and number of branchings of the
box(1)- and box(2)-consistency algorithms. See [24, 25] for a description of the
benchmarks. The intention is not to compare the two algorithms systematically but
rather to make readers aware that neither of two algorithms is really superior. As
can be seen, the box(2)-consistency algorithm always performs less branchings (as
should be expected) but is always slower than the box(1)-consistency algorithm.
On these problems, box(1)-consistency seems to give a better tradeoff between
pruning and pruning time. A fundamental topic for future research is thus to de-
termine when box(2)-consistency is more effective than box(1)- consistency and,
more generally, to characterize the class of nonlinear problems for which these
techniques are effective.

8. Conclusions

This paper reconsidered the transistor modelling problem from Ebers and Moll [6],
which consists of nine nonlinear equations and is challenging both for local and
global methods. The problem was tackled by a novel branch-and-prune algorithm
combining techniques from interval methods and constraint satisfaction. In particu-
lar, the algorithm enforces a local consistency condition called box(2)-consistency
that strengthens the notion of box(1)-consistency introduced in [24]. The algorithm
was applied to find all solutions to the transistor modelling problem and returned
a unique safe box in the range[0, 10]9 in about 40 minutes, performing only 118
branchings. The paper also indicated that box(2)-consistency may be too strong a
local condition for many problems, since it is slower than box(1)-consistency on
benchmarks from continuation methods [25]. An interesting avenue of research
is to characterize more formally the class of applications for which box(1)- and
box(2)-consistency are effective pruning techniques.

jogo436.tex; 30/06/1998; 12:38; p.17

92 J.-F. PUGET AND P. VAN HENTENRYCK

Acknowledgments

Special thanks to Christian Bliek for bringing the transistor modelling problem to
our attention and to Yves Deville for many interesting discussions. This research
was partly supported by the Office of Naval Research under grant N00014-91-J-
4052 ARPA order 8225, the National Science Foundation under grant numbers
CCR-9357704, a NSF National Young Investigator Award.

References

1. G. Alefeld and J. Herzberger (1983),Introduction to Interval Computations. New York:
Academic Press.

2. F. Benhamou, D. McAllister, and P. Van Hentenryck (1994), CLP (Intervals) revisited, inPro-
ceedings of the International Symposium on Logic Programming (ILPS-94), pages 124–138.
Ithaca, NY.

3. F. Benhamou and W. Older (1997), Applying interval arithmetic to real, integer and Boolean
constraints,Journal of Logic Programming32(1): 1–24.

4. O. Caprani and K. Madsen (1980), Mean value forms in interval analysis,Computing25: 147–
154.

5. J.G. Cleary (1987), Logical arithmetic,Future Generation Computing Systems2(2): 125–149.
6. J.J. Ebers and J.L. Moll (1954), Large-scale behaviour of junction transistors,IEE Proc.42:

1761–1772.
7. E.R. Hansen and R.I. Greenberg (1983), An interval Newton method,Appl. Math. Comput.12:

89–98.
8. E.R. Hansen and S. Sengupta (1981), Bounding solutions of systems of equations using interval

analysis,BIT 21: 203–211.
9. E.R. Hansen and R.R. Smith (1967), Interval arithmetic in matrix computation: Part II,SIAM

Journal on Numerical Analysis4: 1–9.
10. H. Hong and V. Stahl (1994), Safe starting regions by fixed points and tightening,Computing,

53(3-4): 323–335.
11. R.B. Kearfott (1990), Preconditioners for the interval Gauss-Seidel method,SIAM Journal of

Numerical Analysis27: 804– 822.
12. R.B. Kearfott (1991), A review of preconditioners for the interval Gauss-Seidel method,

Interval Computations1: 59–85.
13. R. Krawczyk (1969), Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-

schranken,Computing4: 187–201.
14. O. L’Homme (1993), Consistency techniques for numerical constraint satisfaction problems, in:

Proceedings of the 1993 International Joint Conference on Artificial Intelligence. Chamberry,
France.

15. A.K. Mackworth (1977), Consistency in networks of relations,Artificial Intelligence8(1): 99–
118.

16. U. Montanari (1974), Networks of constraints: fundamental properties and applications to
picture processing,Information Science7(2): 95–132.

17. R.E. Moore (1966),Interval Analysis. Englewood Cliffs, NJ: Prentice-Hall.
18. R.E. Moore (1979),Methods and Applications of Interval Analysis. SIAM Publ.
19. R.E. Moore and S.T. Jones (1977), Safe starting regions for iterative methods,SIAM Journal

on Numerical Analysis14: 1051– 1065.
20. A. Neumaier (1990),Interval Methods for Systems of Equations. PHI Series in Computer

Science. Cambridge: Cambridge University Press.

jogo436.tex; 30/06/1998; 12:38; p.18

A CONSTRAINT SATISFACTION APPROACH TO A CIRCUIT DESIGN PROBLEM 93

21. W. Older and A. Vellino (1993), Constraint arithmetic on real intervals, inConstraint Logic
Programming: Selected Research. Cambridge, Mass.: The MIT Press.

22. H. Ratschek and J. Rokne (1988),New Computer Methods for Global Optimization. Chichester:
Ellis Horwood Ltd.

23. H. Ratschek and J. Rokne (1993), Experiments using interval analysis for solving a circuit
design problem,Journal of Global Optimization3: 501–518.

24. P. Van Hentenryck, D. McAllister, and D. Kapur (1997), Solving polynomial systems using a
branch and prune approach,SIAM Journal on Numerical Analysis34(2): 797–827.

25. J. Verschelde, P. Verlinden, and R. Cools (1994), Homotopies exploiting Newton polytopes for
solving sparse polynomial systems,SIAM Journal on Numerical Analysis31(3): 915–930.

jogo436.tex; 30/06/1998; 12:38; p.19

